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Abstract

A mathematical model describing the stable non-linear torsional vibrations

of the Space Shuttle tile-strain isolator pad, assembly parametrically induced

by normal excitation, is derived. In this treatment the model is represented

by a second order non-linear equation with time-dependent coefficients.

To analyze the non-linear vibratory behavior of this system an approximate

analytical method of equivalent linearization in combination with the Rayleigh

method has been used.

Because of the anisotropic and non-elastic behavior of the strain

isolator, an equivalent Young's modular and Poisson's ratio were introduced.
J

These data was derived from a comparison of the analytical solution with

experimental data.

The mathematical model so derived allows the evaluation of the vibratory

behavior of SIP-tile system under any loading including random excitation.
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I. Introduction

I

This work was motivated by the results of experiments performed by the

NASA Langley Research Center. These experiments exhibited torsional Strain

Isolation Pad (SIP) tile vibrations and failure induced by sinusoidal

excitations applied at the base: when excited sinusoidally in the normal

direction in the range of 60 to go Hertz at a level above 15g, a fundamentally

nonlinear dynamic instability occured in which in-plane motions exceeding

2.Smm were observed• These in-plane torsional responses occured at a

frequency of exactly one half the excitation frequency•

Three basic conclusions follow from these results.

l •

t

Because torsional in-plane vibrations are induced by out-of-plane

disturbances, the phenomenon is due to a mechanism of instability.

o The mechanism of instability is associated with a parametric

resonance because in-plane responses occured at a frequency of

exactly one-half of the excitation frequency.

!

® The phenomenon is strongly nonlinear because the initial instability

in the area of small deformations is replaced by stable self-induced

vibrations of a finite amplitude.

In order to better understand the non-linear vibratory nature of this

system and in order to predict its behavior under certain loads which cannot

be modeled in the course of experiments, a mathematical model had to be

developed.

The simplest mathematical model describing a parametrical resonance is

given in the form of an ordinary linear differential equation of the second

order with a time-dependent coefficient:
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where_&#is the torsional angle

e is the amplitude of normal excitation
is the frequency of normal excitation

_= Const is the torsional stiffness.

l
I

This equation is called the Mathieu equation. Its solutions are expressed

in the form of special (Mathieu) functions.

As is proven in the theory of Mathieu equations there are some areas of

instability of the solutions if the eigenfrequency._. =_V"_ is close

enough to one-half the exciting frequency _ i.e.

i_i_

The solutions in this area of instability is presented in the following

form:

f-=Ge

where _ (_, _ (_) are some periodical functions. _/, C_

constants of integration

are

and

t

/, >o
It is see_ that irrespective of the signor j#w( , one of the terms in Eq.

(3) will grow without limit if _ :_ . This means that a parametric

resonance is a typical case of instability which can be generated by

infinitesimal random disturbances.

There are several differences between parametric and forced resonances:

l) A forced resonance is associated with a stable system and can occur even

without initial (disturbvances while a parametrical resonance is a result
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of instability of the initial state and can occur only due to initial

disturbances.

i
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2) In the response of a forced resonance the amplitude of vibration grows

linearly with respect to time, while in the response of a parametrical

resonance the amplitude grows exponentially. That is why a forced

resonance can be limited by linear damping:

or)

while a parametric resonance can be depressed only if the linear damping

exceeds some particular value:

3) A forced reesonance occurs at discrete frequencies while a parametrical

resonance covers a continuum of frequencies in the area of instability.

The degeneration of a parametric resonance into stable self-induced

vibrations with finite amplitude is typical nonlinear phenomenon due to the

increase of the stiffness with an increase of the amplitude of vibration. In

the simplest form this nonlinearity can be introduced by an additional term in

Eq. (I):

QO

÷+(k-#° F + @-o k,,o (7)

o..

t

In this report, the nonlinear second order equation of motion of the form of

Eq. (7) governing the nonlinear torsional SIP-tile parametrical resonance is

derived by exploring the method of equivalent linearization in a combination

with the Rayleigh method, the area of instability and maximum amplitude of

self-induced vibrations are defined in closed form.



2. Conditions for the Loss of Stabilit_ for the Strain Isolation System

The transition from normal to torsional displacements can be explained by

the loss of stability of the SIP as a result of compression. The compression

of the SIP during normal excitation is generated by the inertia forces:

r

+

where p

#a

is the average pressure in the SIP

is the normal acceleration

is the area of the SIP

is the mass of the SIP-tile system.

As shown in the non-linear theory of elasticity _-'+, the loss of stability is

associated with failure of hyperbolicity of the governing equations. From the

mathematical point of view it corresponds to the appearance of imaginary

characteristic speeds of wave propagation. From the mechanical point of view

this leads to appearance of local maxima in potential energy as a function of

strains in the directions where the characteristic speed is imaginary.

I

There are two types of characteristic speeds in the compressed SIP:

v j:

where _ ! is the characteristic speed of longitudinal waves

_ is the characteristic speed of transverse waves

E, G are the Young's and shear modulii of SIP

is the density of SIP
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For the classical structural materials like steel in the domain of elasticity:

E,G >_ p (.)

i e. both of the characteristic speeds _ /_ are real and the

instability described above does not occur. However, for soft materials like

rubber, textile materials, etc, the shear modulas G can be sizable compared to

the pressure in the domain of elasticity

The material of SIP is not only soft, but in addition it possesses a filament

type of microstructure which reduces significantly the through-thickness shear

modulus.

Using Eq. (8) the pressue can be evaluated as:

if

A¢ i

i.e. the loss of stability of the microstructure of the SIP occurs if

O

a_

.._=_ is the through the thickness shear modulus at the instance of thewhere

loss of stability.

I" T

In the course of this instability the initially vertical filaments become

curved or sloped (Fig. l)

TILE
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In other words, the compression of the SIP occurs due to the sloping of its

vertical filaments rather than by their contraction.

Obviously, the effective through the thickness shear modulus

increasing with an increase in the filament slope, i.e.

and this will provide the stability of a new state of the SIP;

_# will be

The relationship between the compression

from geometry:

and

_' and the slope angle_follows

where h is the thickness of the SIP.

Clearly, this dependence holds only for compression, but not for a tension

when the thickness h is increasing (_) (_}.
_j

Now in-plane vibrations of the SIP can be presented in the simplest forms:

I. In-plane shear vibrations (Fig. 2).

8 C

A
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where ABCD {or AB'C'D) is a vertical SIP cross-section during deformation.

2. In-plane torsional vibrations (Fig. 3)

F_T

i

,J

t.

L

Here ABCD (or AB'CD) is one-half of a vertical SIP cross-section before

deformation. For outside filaments the compression is carried out only by

torsion while for inside filaments it is carried out mostly by

contraction. For instance, for the filament AB the decrease of the SIP

thickness CC' is due to the torsion but for the central filament CD - is

due to contraction.

i°

C

Io,
A F?g.3.

The angle of torsiont_is related to the slope angle_by the relationship

where _is the size of the square tile.

3. Governing Equation for Torsional Vibration

In this section attention will be paid to in-plane torsional vibrations

although the results can equally be applied to in-plane shear vibrations.
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The potential energy of a compressed SIP can be presented as a sum of the

potential energy r_ I of contraction of filaments and the potential

energy r_ 2 of torsion that is

nz : o.i_/6 _ .___s.

(:_!,

i;."•.

where _I_ is the through the thickness Young's modulus of the SIP.

The virtual work of the external (normal to the substrate) forces is given by

the expression:

The virtual work of the torsional inertia forces can be expressed in the

following form:

Ignoring the inertia forces due to the contraction of the filaments and using

the principle of virtual work:

-_p,-_'n,÷ _'_°÷:tA,.=o
then,

01"
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where

=

while the external force _ is taken in its simplest form as

It is seen that Eq. (25) is identical to Eq. (7) previously discussed.

4. Method of Equivalent Linearization

Eq. (25) is nonlinear because of the last term I_t#_Z_ 3 . Its analytical

investigation cannot be performed without some approximations. Becuase the

main reason for such,an investigation is analysis of self-induced vibrations

which in the first approximation can be considered as harmonic vibrations, the

method of equivalent linearization is applicable.

It has been shown EaJ that this method is very effective for the

analysis of self-induced vibrations which are governed by even more

complicated differential equations than is represented by Eq. (25).

The basic idea of this method is given below.
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Assuming that Eq. 30 possesses in the zone of the parametric resonance a

periodical solution which is close to being harmonic and can be presented in

the form:

_°= Ao +A7CoJ_ + a S,'_<u¢ =Ao _ c s:. o (_/)

where

C -" V,_a +sz', = " ,

.on_  near un < on@&" , er od ca,,oo:

wherefi_} presents the higher order harmonics in Fourier series and

@

lr

17" a

Consider an auxiliary linear differential equation

_C_Oc,,J

/
where _ik ili_'a_ are unknowns which do not depend on

time.

These unknowns can be defined from the requirement that at _'_ _i_(ithe

following equality must hold:

[pC_,),ap]7<>+L'I<(<,>_J+Ak.7_°+*E =
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It is seen that condition (37) makes Eqs. (30) and (37) equivalent within

the frame work of the approximations Stated before.

! :

1

Substituting Eq. (33) in Eq. (37) and equaling the coefficients at "sin",

"cos" and free terms leads to the following expressions for the coefficients

of the equivalent linearization4K,4p,4 E:

,_p(,q.,c)- --_-f r,,)

,_E = eo'CAo,c>- Ao,_k(A°. c3 (_
For the particular case when Eq. (30) is degenerated into Eq. (25) the

Equations (34), (35), (38)-(40) are simplified:

1/-
o

-4

C'A: "-=9a_ = & A° +,
Now the original non-linear Eq. (25) is replaced by an equivalent linear

differential equation:
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In contrast to the originally linear equation (I) this linearized equation

possesses a very important property: its stiffness-coefficient depends on the

amplitude of vibrations which is unknownso that a formal solution must be

considered as an implicit equation with respect to this unknown.

f

5. Conditions of Instability on the Zones of Parametric Resonance

The boundaries of parametric instability in the solution of Eq. (46) can

be found by applying the Rayleigh method. The basic idea of this method is as

follows: The boundary of dynamic instability separates the zone of damped

vibrational response from the zone of divergent vibrational response. That is

why at the boundary of instability the vibrational response can be considered

as steady and sought in the form of harmonical vibration.

Ii

The method will be illustrated in the solution of Eq. (30) using the

following Fourier expansions:

/'-/

As was discussed before, the main parametric resonance occurs if the

eigenofrequency is close to one-half the excitation frequency, i.e.

ccJ 2

where i = 1,2, ...etc.

that is

Then for each j the corresponding solution can be sought in the form:



r ":

-13-

Substituting (51) into Eq. (30), and setting to zero the coefficients of

the _(,%c'.? :#.."_#S m_o/free terms and ignoring terms of higher order:

ţ

t

i '

I

il

where

_j =kCk,.'-J'_'_,) ' u,-J

The conditions of the existence of a non-zero solution

corresponds to a zero determinant:

r

V "", (-)

'- ",t ".'j _"

This characteristic equation defines critical frequencies _ for each j.

Clearly, two different situations are possible.

I. _'Ce-J_>_ C._ i.e. there are no real frequencies. This means, that a

parametrical resonance is impossible at the corresponding j.
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2. There are two positive roots _ _ . Then the zone of frequencies

c,9_ r__ Z

is unstable, and r'_(_ corresponds to stability, while f'_ (_

corresponds to instability.

I
For the main resonance J :

equation is simplified

,°d G - G,,, k % o the characteristic

where

Z # Z z÷U +_ =o

!.

i'

For the particular case of Eqo (46)

k'---,o

where C is the amplitude of vibrations.

t

k ,.

Hence:

_': z,,C,,,,s_ c0 -+,e#o

Thus, the main resonance initially (for small amplitudes C) occurs not only at

the frequency
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but also within the zone:

which depends on the external load.

The unstable zone is drawn in the Figure 4

i

!

/
/

/
/,

4K 1 - 2q0

C2'

l

STAB,<'  ' /
J l

p>- ._m_ax/"

C_ /'

_,2 4K1 + 2q0

-'-2
W

It follows from this figure, that maximum amplitude of vibration is given by:

f

when
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Indeed, if for some reason

C _C_OX

f

I

then the response becomes stable and the amplitude will start decreasing up

to C_w_, . Clearly, such a mechanism leads to self-induced

vibrations with the amplitude C_"

6. Identification of the Elastic Modulii

Exploring the experimental results according to which

i

: O./.,e'2M

= O. _1_ _

co,.: 8oHz

C.** : 0.0_

the equivalent modulii _&_l_ ' _&W_ are defined by the formulas (64), (65):

-- -9,2p,,'

G_ = 6"7_ _ O. o 6ps r'

Such a low value of the equivalent modulas (Jr'_ confirm_the assumption that

the mechanism of torsion is associated with the instability of the shape of

the SIP filaments.
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7. Evaluation of Dampin 9 to Supress Self-lnduced Vibrations.

For the evaluation of the damping to supress self-induced vibrations the

energy method can be applied. Exploring Eq. (68) and assuming the existence

of damping (due to the pumping of air by the SIP or due to viscous additions)

the equation of motion can be written:

where ? is the damping coefficient.
¢

The comparison of the work done during the period of one cycle by the existing

force: _F/_'_

and the dissipating force

,'w/z#

leads to the following evaluation:

if

As shown in Ref. 2 the damping coefficient can be subdivided in two parts:

¢sh
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t

where /([o is the coefficient of linear damping, while the second term in

Eq. (71) corresponds to a non-linear damping due to the loop of hysteresis in
I

the SIP stress-strain characteristic (S is the area of this loop), Figure 5.

Thus it follows from (70) and (71):

i -

It is seen that the linear term loses its effectiveness for low frequencies,

while the nonlinear term loses its effectiveness for high amplitudes. That is

why both of the terms in (72) are important.

But it follows from (63) that a parametric resonance for a selected sample of

a SIP-tile assembly can occur at any frequency up to _0/_#'_ ' . Hence, for

a conservative evaluation instead of (72) it can be written:

S>
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For the load given in the experiment mentioned above

5 > ff_OMk----_"_,= l_psi

t •

! •

8. Parametrical response to random excitations.

Random loads are usually given in the form of the spectral density:

which is proportional to the mean power of the process in the interval of

frequencies from t_ to t._i_-wi_ .

In this interval the force can be approximately presented in the form:

In terms of Eq. (46) for the main resonance, i.eo for

this force is given in the form

so that instead of Eq. (46) the governing equation is the following:

f, 7;+[i<',+7-x', :o
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_O
The dependence of the amplitude _1_ on the frequency

leads to the

transcendental characteristic equation instead of (59)

In order to solve this equation analaytically the function _((wPJwill be

#.

approximated piece-wise in the form

f. I

where the coefficients

interval.

J

are constants within the corresponding

Then for each interval the characteristic equation (80) is written in the

simplified algebraic form:

where

ko' f --

Now if the roots of this equation:

('. e.

are outside of the corresponding interval (81), then a parametrical resonance

cannot occur.
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k

The parametrical resonance is possible only if even one of the

characteristic roots occurs within the interval (81).

r-:

I c .

This theory will be applied to the random loads given in Figure 6.

curve can be subdivided in three zones:

#

Zone 1: 0 _ _ _ _ (_C) $f'C"

Zone 2:

! t

The

Zone 3:

I /

z _oos-_7_ _ _ f22s'Os-_7

!.

The calculation of the coefficient _/5 gives:

I

I

I

Hence for _/_at zero amplitude (C=o):

_Z_ = 0oo7,/_= Z.z

d._=-o.o,, _;--,_
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Substituting (91) through (93) into Eq. {86) shows that for the frequency

intervals (86), (87) the characteristic roots are imaginary, while for the

interval (85) there are two real roots corresponding to the following critical

frequencies for zero amplitudes:

#

which means that a parametrical resonance occurs in the first interval of

frequencies (85)

Now following the procedure performed in the item 5 the analog of Eqo (61) is

given by:

or approximately:

The boundaries of instability
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are plotted in Figure 7 which is similar to the Figure 4

i_i:!-

C 2

STABILITY

I
1"2
I Cmax

I
I

2

i

o (28__)2 (500_)2

2

-2
UJ

where

/, =,-,, +#-4

or exploring the data from the item 6:

cO_---_=92s-oo c a- o. O Ooo)
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The amplitude at the frequency 0.)2 -" _'/(_2 is

x -- OiS"

i.e. one-half the maximum amplitude observed in the experiment.

However, it is important to emphasize that this maximum amplitude

corresponds only to those vibrations which are initially unstable, i.e. when

the instability appears at _--.D (_. For single-harmonic excitation such

a method for the determination of the maximum amplitude is reasonable because

the probability of large initial torsional disturbances can be ignored. In

contrast to this, for random excitations containing, all the frequencies, the

probability of large initial torsional disturbances cannot be ignored because

these disturbances can be parametrically induced by lower frequencies and then

shifted towards the higher frequencies (Fig. 7).

That is why for random excitations, self-induced vibrations with

frequencies higher than 45 Hz are also possible and the maximum amplitude will

correspond to 80 Hz but not 45 Hz:

This amplitude is comparable with the amplitude observed in the

experiment (C_(_.0 3_ accompanied with the failure of the SIP-tile

structure, which means that the random load presented in Figure 6, can lead to

the same kind of failures at the same frequency 80Hz.

The dependence of the maximum amplitudes of self-induced vibrations on the

frequency is given now by the equation following from (lO0):

#

where
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9. Conclusions. The following are the conclusions of this investigation:

T

i. _ .

L

f
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o

A mathematical model describing parametrically excited torsional SIP-tile

vibration has been developed. In the simplest case it is described by the

Second order non-linear differential equation with a periodical

coefficients.

Applying the method of equivalent linearization the boundaries of

parametrical instability have been defined•

Because of the non-linear properties of the SIP-tile model the amplitudes

of torsional vibrations grow not without limit but up to a certain level

of stable self-induced vibrations. This level depends on the exciting

frequency. The maximum amplitude of self-induced vibrations corresponds

to the frequency 80 Hz, where the relative amplitude of torsional

vibrations is around 0.03. This amplitude C decreases with decrease of

the exciting frequency

C

The equivalent torsion modulas

response date

in the proportion:

|i

##o

GL_ identified from experimental

is very low which indicates that the SIP material works in the course of

self-induced vibrations beyond the limits of stability of the shape of its

filaments.

There are two ways to eliminate parametric resonances: a) shift the

SIP-tile eigen-frequencies from the zone of parametrical resonance by

changing the SIP-tile parameters, b) create a mechanism of a dissipation

of energy in the course of self-induced vibrations.

The first way seems to be difficult to achieve because of a wide zone of

resonance frequency (see the formula (63)).
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The second way shows more promise:

resonance the damping coefficient

F -
or for the main resonance frequency 80 Hz the area of the loop of

hysteresis of the SIP stress-strain characteristic must be:

in order to depress the parametric

_ must be:

S >Z¢ps,

The analysis of self-induced vibration parametrically excited by random

loads (Fig. 6) leads to the following results:

The unstable frequencues are in the domain:

0 _-cc,D 

i.e. they are shifted toward the lower frequencies in comparison to the

case of a single-harmonic excitation.

However, in contrast to the case of a single harmonic excitation the

higher frequencies up to 80Hz also must be taken into account, because the

instability at these frequencies occurs when initial torsional

disturbances exceed some finite level while such disturbances can be

generated because of instability at the lower frequencies.

Hence, the maximum amplitude of self-induced vibrations occurs at the

frequency 80Hz and equals to 0.026.

L

This means that the behavior of the SIP-tile system under the random load

given in Fig. 6 will be similar to its behavior in the course of the

experiment mentioned above.



-27-

REFERENCES

1

• Zak, M., "Surface Phenomena in Elasticity" Journal of Elasticity, April,

Ig81.

2. Vulfson, Dynamics Analysis Cycle Mechanics, 1976, Leningrad (in Russian)•

!

fll


